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Preparation of new monomers aza-b3-aminoacids for
solid-phase syntheses of aza-b3-peptides
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Abstract—The preparation of new Nb-Fmoc-protected aza-b3-amino acids (aza-b3-aa) with proteinogenic side chains as well as their
Nb-Fmoc, Nb-Cbz or Nb-Boc aza-b3-amino esters (from Pro, Asn, Asp, Glu, Gln) by successive nucleophilic substitutions will be
described.
� 2007 Elsevier Ltd. All rights reserved.
In recent years, there has been considerable interest in
the design and synthesis of non-natural oligomers that
form secondary structures and present enhanced meta-
bolic stability, bioavailability and biological absorp-
tion.1–7 In this class of peptidomimetics, peptides
consisting exclusively or including aza-b3-amino acid
have emerged as a promising new class of compounds
that form N–N turns and present potentially useful bio-
logical properties.8,9

For our ongoing projects on the synthesis of aza-b3-pep-
tides, we need to have ample access to the aza-b3-amino
acid building blocks with proteinogenic side chains and
Nb-Fmoc protection. With the exceptions of aza-b3-Lys,
aza-b3-Tyr, aza-b3-Arg only Fmoc-protected aza-b3-
amino acids with nonfunctionalized and achiral side
chains have been published.10 We described here, in de-
tail, the preparation of five new aza-b3-amino acid deriv-
atives, with the side chains of aspartic, glutamic, proline,
asparagine and glutamine.
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Scheme 1. Synthesis of Nb-protected-aza-b3-amino acids.
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We have previously reported two methods to prepare
aza-b3-amino acids, the first one consisting in a nucleo-
philic substitution of benzyl or t-Bu bromoacetate by
Na-substituted-Nb-protected hydrazines 1 (Scheme 1).11

Then, the required monomers 3 were obtained by depro-
tection of the carboxy protecting group of esters 2 in sat-
isfactory to good yields. Nevertheless, nucleophilic
substitution of bromo acetate by N-substituted Fmoc
hydrazine proceeds in low yield (36–50%). Therefore,
an alternative approach, in one step, to obtain aza-b3-
amino acid has been described, which relies on reductive
amination of glyoxylic acid and Nb-Fmoc protected-Na-
substituted hydrazine 1 (Scheme 2).12

N-Substituted Fmoc hydrazines 1 were prepared accord-
ing to literature procedures by reduction of Fmoc
hydrazones, derived from the reaction of Fmoc carbaz-
ate with either aldehyde or ketone.13,14 To introduce side
chains such as aspartic, glutamic, proline and aspara-
gine, the corresponding aldehydes were not available
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Scheme 2. Synthesis of Fmoc-aza-b3-amino acid.
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Scheme 3. Synthesis of Nb-substituted Fmoc hydrazines.
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or did not lead to hydrazones (Scheme 3). In the litera-
ture the introduction of aspartic acid was achieved by
reduction of the condensation product from glyoxylic
acid and 9-fluorenylmethyl carbazate. The acylhydraz-
one was then reduced with 5 fold excess of cyanoboro-
hydride and the resulting acid was then protected as
t-butyl ester using t-butyl trichloroacetimidate in an
overall yield of 20%.15 Nucleophilic substitution of the
corresponding bromo acetate or propionate with Fmoc
carbazate would be an alternative to introduce side
chains. Unfortunately, this reaction proceeds in some-
what lower yield (20%) than the corresponding Boc or
Cbz carbazates (80%).16

Therefore, to overcome this problem Cbz-aza-b3-aspar-
tic OMe 2 (n = 1, R = CH2CO2t-Bu, PG1 = Cbz,
PG2 = Me) and Cbz-aza-b3-glutamic OMe 2 (n = 2,
R = (CH2)2CO2t-Bu, PG1 = Cbz, PG2 = Me) were first
prepared by two successive nucleophilic substitutions.16

After hydrogenolysis of 2 in the presence of Pd/C to
remove the benzyl group,17 treatment of 6 with FmocCl
in the presence of NaHCO3 afforded N-Fmoc protected
aza-b3-aspartic 2 (n = 1, R = CH2CO2t-Bu, PG1 =
CbzNHNH2 Cbz
N
H

H
N

Ot-Bu

O

4
n

H2N
N

OMe

Ot-BuO2C
n

3 R=(CH2)nC

FmocHN
N

t-BuO2C
n

Br(CH2)nCO2t-Bu

DIPEA

H2, Pd/C

5

6

FmocCl

NaOH, CaCl2

n =1 : 80%

95% NaHCO3

n=1 : 65%

n =1 : 85%

Scheme 4. Synthesis of Fmoc-aza-b3-Asp-OH (n = 1) and Fmoc-aza-b3-Glu
Fmoc, PG2 = Me) or glutamic methyl ester 2 (n = 2,
R = (CH2)2CO2t-Bu, PG1 = Fmoc, PG2 = Me). Then
saponification of the corresponding C-terminal methyl
ester, catalyzed by CaCl2 to suppress Fmoc cleavage
under basic conditions,18,19 leads to the corresponding
N-Fmoc protected aza-b3-aspartic 3 (n = 1, R = (CH2)2-
CO2t-Bu) in an overall yield of 40% or glutamic acid 3
(n = 2, R = (CH2)2CO2t-Bu) in an overall yield of 20%
(Scheme 4).

Asparagine or glutamine side chains could be intro-
duced by aminolysis of ester group. First of all, Boc-
aza-b3-Gly-OMe 8 (n = 1) was made in 70% yield by cat-
alytic hydrogenation of the condensation product from
glyoxylic methyl ester obtained in situ by oxidation of
dimethyl LL-tartrate. Analogue 8 (n = 2) was obtained
by nucleophilic substitution of methyl bromopropionate
in 40% yield. Introduction of asparagine and glutamine
chains was achieved by aminolysis of the ester group of
8.20 Then nucleophilic substitution of benzyl bromoace-
tate by hydrazine 9 leads, respectively, to Boc-aza-b3-
Asn-OBn 2 (n = 1, R = CH2CONH2, PG1 = Boc,
PG2 = Bn) and Boc-aza-b3-Gln-OBn 2 (n = 2, R =
CH2CONH2, PG1 = Boc, PG2 = Bn). After deprotec-
tion of hydrazine function with HClg, the Nb-Fmoc
derivatives 2 (R = CH2CONH2, PG1 = Fmoc,
PG2 = Bn) and 2 (R = (CH2)2CONH2, PG1 = Fmoc,
PG2 = Bn) are preferably obtained by reaction of
Fmoc-Cl and NEt3 (Scheme 5).

The synthesis of peptides containing asparagine or glu-
tamine with unprotected side-chains is known to be
fraught with different types of problems. Reaction of
the activated a-carboxyl group of asparagine or gluta-
mine with b-carboxamide function leads to nitrile and
succinimide derivatives. This is often the cause of incom-
plete or low coupling with the amino acid and of by-
product formation.21 The trityl group seems to be a
good protecting group for carboxamide functions of
asparagine and glutamine as tritylated carboxamide
could have a cleavage rate similar to the usual t-butyl-
type protecting group for peptides. The carboxamide
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Scheme 5. Synthesis of Fmoc-aza-b3-Asn-OH (n = 1) Fmoc-aza-b3-Gln-OH (n = 2).
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functions of asparagine and glutamine analogues were
tritylated by an acid-catalyzed reaction with triphenyl-
methanol and acetic anhydride in glacial acetic acid at
60 �C. Catalytic hydrogenation of ester 2 (R =
(CH2)2CONHTrt, PG1 = Fmoc, PG2 = Bn) finally gives
Fmoc-aza-b3-Asn(Trt)-OH 3 (n = 1, R = CH2CON-
HTrt) in 30% overall yield and Fmoc-aza-b3-Gln(Trt)-
OH 3 (n = 2, R = (CH2)2CONHTrt) in 10% overall
yield (Scheme 5).

Proline is the amino acid with the highest propensity to
occur in turn structures in proteins, because of the
constraints of pyrrolidine ring formation. tert-But-
oxycarbonylhydrazine 7 was converted to 1-tert-butoxy-
carbonyl-2-carboxybenzyloxyhydrazine 11 by treatment
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BocHN NH2 BocHN NHCbz
ZCl

1) N
2) B

HN N CO2tBu

N
Fmoc

1) HClg
2) NEt3

89%

98% 

Fm
NaH

Br-CH2-CO2
K2CO3

85%

99%

HClg

74%

N NH
Cbz

Toluene

7 10

12

13

3 R

Scheme 6. Synthesis of Nb-Fmoc-aza-b3-Pro-OH.
with carboxybenzyloxy chloride. Treatment of the
orthogonally protected hydrazine with sodium hydride
in DMF followed by reaction with 1,3-dibromopropane
afforded the protected five-membered cyclic hydrazine
12.22 After deprotection of the Boc group using trifluoro
acetic acid or HClg, nucleophilic substitution of tert-bu-
tyl bromoacetate affords Cbz-aza-b3-Pro-OtBu 2
(R = (CH2)3, PG1 = Cbz, PG2 = t-Bu). After reductive
deprotection of the Cbz group using 10% Pd/C as a cat-
alyst in methanol, the Nb-Fmoc derivative 2,
R = (CH2)3, PG1 = Fmoc, PG2 = t-Bu, is obtained by
nucleophilic substitution of Fmoc-Cl by 13. Finally
deprotection of the Boc group using HClg, leads to pro-
line analogue Fmoc-aza-b3-Pro-OH 3, R = (CH2)3,
PG1 = Fmoc, in 35% overall yield (Scheme 6).
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In conclusion, we described herein the preparation of
five new Nb-Fmoc-aza-b3-amino acids with four hetero-
atomic side chains by successive nucleophilic substitu-
tions. The solid-phase synthesis of oligomers or hybrid
peptides incorporating these analogues will be published
later.
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